

FUNDAÇÃO ESTADUAL DE PROTEÇÃO AMBIENTAL HENRIQUE LUIZ ROESSLER/RS - FEPAM

DEPARTAMENTO DE QUALIDADE AMBIENTAL - DQA DIVISÃO DE PLANEJAMENTO AMBIENTAL - DIPLAN DIVISÃO DE MONITORAMENTO AMBIENTAL - DIMAM SERVIÇO DE INTELIGÊNCIA GEOESPACIAL - SIGEO

QUALIDADE AMBIENTAL DO ESTADO DO RIO GRANDE DO SUL

PROJETO BALNEABILIDADE 2022/2023 RELATÓRIO DAS CONDIÇÕES DE BALNEABILIDADE DAS PRAIAS NO ESTADO DO RIO GRANDE DO SUL NOVEMBRO 2022 A FEVEREIRO 2023

Porto Alegre/RS Novembro de 2023

FUNDAÇÃO ESTADUAL DE PROTEÇÃO AMBIENTAL

Renato das Chagas e Silva

DIRETORIA TÉCNICA

Renato das Chagas e Silva

DEPARTAMENTO DE QUALIDADE AMBIENTAL

Glaucus Vinicius Biasetto Ribeiro

DIVISÃO DE PLANEJAMENTO AMBIENTAL

Claudia Bos Wolff

SERVIÇO DE INTELIGÊNCIA GEOESPACIAL

DIVISÃO DE LABORATÓRIOS

Andrea Cassia de Melo Machado

PROJETO BALNEABILIDADE 2022/2023 RELATÓRIO DAS CONDIÇÕES DE BALNEABILIDADE DAS PRAIAS NO ESTADO DO RIO GRANDE DO SUL - NOVEMBRO 2022 A MARÇO 2023

O presente documento relata os resultados do monitoramento das condições de balneabilidade das praias no Estado, realizado pela equipe técnica da Divisão de Planejamento Ambiental/DIPLAN, vinculada ao Departamento de Qualidade Ambiental/DQA da FEPAM.

Os dados apresentados são oriundos da rede de Pontos de Monitoramento de Balneabilidade da FEPAM, operada pela Gerência Regional Litoral Norte (GERLIT), Divisão de Laboratórios (DILAB) e Serviço de Amostragem (SAMOST) da FEPAM; Companhia Riograndense de Saneamento (CORSAN) e pelos Pontos de Monitoramento de Balneabilidade do Serviço Autônomo de Saneamento de Pelotas (SANEP).

EQUIPE TÉCNICA EXECUTURA DA FEPAM/SEMA:

Equipe Executora e de Elaboração do Relatório

Divisão de Planejamento Ambiental

Geóloga Cátia Luisa Gayer Vaghetti Biólogo Clebes Brum Pinheiro

Serviço de Inteligência Geoespacial

Geógrafa Lilian Maria Waquil Ferraro Geógrafa Rejane Valdameri

Departamento de Qualidade Ambiental

Ag. Administrativa Carolina Marini Steck

Estagiários:

Acad. Química Larissa Leffa Fernandes

Acad. Biologia Lucca Bragança Castagnino Viana

Equipe de Amostragem

Gerência Regional Litoral Norte

Eng.º Ftal. Antônio Augusto Ungaretti Marques

Eng.^a Ftal Caroline Teixeira Moura

Biol.^a Clara Weber Liberato

Biol.º Fabiano Minossi Silva

Geol.º Marco Bimkowski Rossoni

Eng.º Agron. Otavio Augusto Dalla Rosa

Geol.^a Renata Dillenburg Voss

Biol.º Romulo Tomas de Oliveira Valim

Equipe de Análises

Divisão de Laboratórios

Serviço de Análises Biológicas

Biólogo, Me. Rubem Cesar Horn

Biólogo, Me João Alberto Fabrício Filho

EQUIPE TÉCNICA EXECUTORA DA CORSAN

EQUIPE TÉCNICA EXECUTORA DO SANEP

SUMÁRIO

1.	INTRO	DUÇÃO	6
2.	OBJE	ΓΙVO	6
3.	LEGIS	LAÇÃO DA BALNEABILIDADE	6
3	3.1 Res	olução CONAMA n° 274/2000	7
3	3.2 Res	olução CONAMA № 357/2005	7
4.	SAÚD	E E BEM-ESTAR HUMANO X CONDIÇÕES DE BALNEABILIDADE	8
5.	REGIĈ	DES HIDROGRÁFICAS E GERCO (PROGRAMA DE GERENCIAMENTO	
CO	STEIRO)	8
6.	HISTÓ	RICO DO PROJETO BALNEABILIDADE	9
7.	REDE	E PERÍODO DE MONITORAMENTO	9
7	'.1 RE	GIÃO HIDROGRÁFICA DAS BACIAS LITORÂNEAS	10
	7.1.1	ZONA COSTEIRA - GERCO - LITORAL NORTE	11
	7.1.2	ZONA COSTEIRA - GERCO - LITORAL MÉDIO	13
	7.1.3	ZONA COSTEIRA - GERCO - LITORAL SUL	14
7	'.2 RE	GIÃO HIDROGRÁFICA DO GUAÍBA	15
7	'.3 RE	GIÃO HIDROGRÁFICA DO URUGUAI	16
8.	AMOS	TRAGEM, ANÁLISE E RESULTADOS	19
9.	DIVUL	GAÇÃO	31
10.		DE BANHISTAS	
11.	CONC	LUSÃO	35
12	REFE	PÊNCIAS RIRI IOGRÁFICAS	36

LISTA DE FIGURAS

FIGURA 1: DISTRIBUIÇÃO DOS MUNICÍPIOS INTEGRANTES DO PROJETO BALNEABILIDADE 2022- 2023	
FIGURA 2: TORRES, ARQUIVO DIPLAN/RAFAEL MIDUGNO	13
FIGURA 3: PRAIA DAS ONDINAS – SÃO LOURENÇO DO SUL. FOTO CEDIDA PELA PREFEITURA DE SÃO LOURENÇO DO SUL. FIGURA 4: BALNEÁRIO DO PORTO – SANTA VITÓRIA DO PALMAR, ARQUIVO DIPLAN/CLEBES BRUM	
FIGURA 5: PRAIA NOVA – CACHOEIRA DO SUL. FOTO CEDIDA PELA SECRETARIA MUNICIPAL DE TURISMO, ESPORTE E LAZ	
1 IGUNA 3.1 NAIA NOVA — CACHOLINA DO GUL. I GIO GLDIDA FLEA SLONLITANIA IVIGINIGIFAL DE TONISWIO, ESFONTE L'EAZ	
FIGURA 6: PRAIA DAS AREIAS BRANCAS – ROSÁRIO DO SUL. FOTO CEDIDA PELO DEPARTAMENTO DE MEIO AMBIENTE DE ROSÁRIO DO SUL.	
FIGURA 7: PLACA INSTALADA NO BALNEÁRIO EM TAVARES. FOTO CEDIDA PELA SECRETARIA MUNICIPAL DE MEIO AMBIENTO	TE. 31
FIGURA 8: VISUALIZAÇÃO NO BALN: BALNEABILIDADE, PREVISÃO DO TEMPO E SEGURANÇA PARA O BANHO, COM LOGOTIP	
APLICATIVO	32
LICTA DE QUADROS	
LISTA DE QUADROS	
QUADRO 1: BALNEÁRIOS MONITORADOS NA ZONA COSTEIRA – GERCO - LITORAL NORTE	11
QUADRO 2: BALNEÁRIOS MONITORADOS NA ZONA COSTEIRA - LITORAL MÉDIO	
QUADRO 3: BALNEÁRIOS MONITORADOS NA ZONA COSTEIRA - LITORAL SUL	
QUADRO 4: BALNEÁRIOS MONITORADOS NA REGIÃO HIDROGRÁFICA DO GUAÍBA.	
QUADRO 5: BALNEÁRIOS MONITORADOS NA REGIÃO HIDROGRÁFICA DO URUGUAI	
QUADRO 6: COMPARATIVO DOS RESULTADOS DA BALNEABILIDADE 2022/2023 NAS REGIÕES MONITORADAS NO ESTADO D	
RIO GRANDE DO SUL	
QUADRO 7 : QUANTITATIVO DE ACESSOS/USUÁRIOS DO SISTEMA BALN. FONTE: PROCERGS.	34
LISTA DE TABELAS	
TABELA 1: LIMITES DE <i>E.COLI</i> E CIANOBACTÉRIAS, DEFINIDOS PARA AS CATEGORIAS PRÓPRIA E IMPRÓPRIA	
TABELA 2: RESULTADOS DE MONITORAMENTO DA BALNEABILIDADE NO PERÍODO NOVEMBRO DE 2022 A FEVEREIRO DE 202	,
NA REGIÃO COSTEIRA DO LITORAL NORTE.	
TABELA 3: RESULTADOS DE MONITORAMENTO DA BALNEABILIDADE NO PERÍODO NOVEMBRO DE 2022 A FEVEREIRO DE 202	
NA REGIÃO COSTEIRA DO LITORAL MÉDIO.	
TABELA 4: RESULTADOS DE MONITORAMENTO DA BALNEABILIDADE NO PERÍODO NOVEMBRO DE 2022 A MARÇO DE 2023, N REGIÃO COSTEIRA DO LITORAL SUL	
REGIAO COSTEIRA DO LITORAL SUL	
TABELA 5. RESULTADOS DO MONITORAMENTO DA BALNEABILIDADE 2022-2023 NA REGIÃO HIDROGRÁFICA DO URUGUAI TABELA 6: RESULTADOS DO MONITORAMENTO DA BALNEABILIDADE 2022-2023 NA REGIÃO HIDROGRÁFICA DO URUGUAI	
	U

1. INTRODUÇÃO

Balneabilidade é a capacidade que um corpo hídrico tem de propiciar, em suas águas, o banho recreativo e a prática de atividades esportivas, tais como natação, esqui aquático e mergulho. Nessas situações ocorre o contato direto e prolongado do banhista com os corpos de água (recreação de contato primário), sendo que as chances de ingestão de água são elevadas. Consequentemente, a saúde e o bem-estar humano podem ser afetados se a água estiver contaminada.

Entre os fatores que influem na balneabilidade estão: *i)* a falta ou ineficiência de sistemas de esgotamento sanitário, que acarretam no lançamento de esgoto, muitas vezes *in natura*, nos córregos que afluem nas praias; *ii)* ineficiência temporária dos sistemas de esgotamento sanitário devido ao aporte de grande quantidade de pessoas nas praias durante os períodos de verão; *iii)* lançamentos clandestinos de esgotos em córregos, que chegam às praias; *iv)* a fisiografia das praias, visto que praias abertas possuem maior capacidade de diluição de contaminantes do que praias que possuem enseadas, baías ou lagunas; *v)* as chuvas carreiam detritos, esgotos e resíduos sólidos para as praias, causando um aumento no número de microrganismos potencialmente prejudiciais à saúde; *vi)* e, quando ocorrem marés vazantes, o escoamento dos córregos tende a ir para as praias, ocasionando contaminações por esgotos domésticos. Além disso, podem ocorrer contaminações pontuais, como derramamentos de petróleo, eventos de maré vermelha, epidemias com doenças que são transmitidas pela água ou floração de algas prejudiciais à saúde humana (fitoplâncton ou perifíton), que também interferem nas condições de balneabilidade.

2. OBJETIVO

O objetivo deste relatório técnico, integrante do Projeto Balneabilidade 2022/2023, no âmbito da Operação Verão desenvolvida pelo governo estadual, é apresentar os resultados do monitoramento das condições de balneabilidade das praias e balneários do Estado do Rio Grande do Sul no período do verão de 2022-2023.

3. LEGISLAÇÃO DA BALNEABILIDADE

Considerando a recomendação da Política Nacional do Meio Ambiente, da Política Nacional de Recursos Hídricos e do Plano Nacional de Gerenciamento Costeiro (PNGC), foram definidos critérios para a avaliação da qualidade ambiental das águas para recreação de contato primário, de acordo com a normativa:

3.1 Resolução CONAMA nº 274/2000

Define os critérios de balneabilidade em águas brasileiras, avaliando sua condição em:

Própria: Quando em 80% ou mais de um conjunto de amostras obtidas em cada uma das cinco semanas anteriores, colhidas no mesmo local, houver no máximo 1.000 coliformes fecais (termotolerantes) ou 800 *Escherichia coli* ou 100 Enterococos por 100 mililitros.

Imprópria: Quando em mais de 20% de um conjunto de amostras coletadas nas cinco semanas anteriores, no mesmo local, os resultados das análises forem superiores a 1.000 coliformes fecais (termotolerantes) ou 800 Escherichia coli ou 100 Enterococos por 100 mililitros; ou quando o último resultado de um conjunto de cinco amostras for superior a 2500 NMP/100 mL no caso da análise de coliformes termotolerantes ou 2000 NMP/100 mL para Escherichia coli ou 400 NMP/100 mL de Enterococos; ou quando for indicado pelas autoridades sanitárias incidência elevada ou anormal, na região, de doenças transmissíveis por veiculação hídrica; ou quando for verificada a existência de resíduos ou despejos, sólidos ou líquidos, inclusive esgotos sanitários, óleos, graxas e outras substâncias, capazes de oferecer riscos à saúde ou tornar desagradável a recreação; ou quando o pH for menor que 6 ou maior que 9, em águas doces, à exceção das condições naturais; ou quando houver comprovação de floração de algas ou outros organismos, até que se comprove que não oferecem riscos à saúde humana: ou outros fatores que contraindiquem, temporária ou permanentemente, o exercício da recreação de contato primário.

A FEPAM atende a legislação federal, realizando o monitoramento do parâmetro *Escherichia coli* em todos os pontos de balneabilidade. As avaliações de condição IMPRÓPRIA apresentadas neste relatório levam em conta, portanto, o parâmetro *Escherichia coli* (*E.coli*), e, também o parâmetro cianobactérias, em alguns pontos de água doce (Osório-Lagoa do Peixoto, Pelotas e Tapes), por apresentarem registro histórico de floração de algas. Nestes casos, é utilizada complementarmente pela Instituição a seguinte norma:

3.2 Resolução CONAMA nº 357/2005

Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Quanto à balneabilidade, define que podem ser utilizadas para recreação de contato primário as águas doces (classe 1 e 2), as águas salinas (classe 1) e as águas salobras de classe 1, indicando o valor máximo da contagem de cianobactérias de até 50000 células/ml ou 5 mm³/L, para as águas doces de classe 2.(Tabela 1)

Embora a Resolução CONAMA nº 357/2005 também estabeleça padrões para recreação de contato primário, ela não é considerada em sua totalidade, pela dificuldade técnica e financeira, em função do número elevado de parâmetros a serem medidos e pela aplicabilidade desta resolução não estar diretamente voltada a estabelecer a classificação de águas para balneabilidade. Deste modo, na FEPAM, somente é considerado, desta legislação, o padrão

definido para o parâmetro cianobactérias, medido em alguns pontos considerados críticos para avaliação de floração de algas, condição que pode gerar água imprópria para balneabilidade, conforme trazido também pela CONAMA n° 274/2000.

4. SAÚDE E BEM-ESTAR HUMANO X CONDIÇÕES DE BALNEABILIDADE

Considerando a relação direta de águas contaminadas provocarem doenças, afetando a saúde e bem-estar da população, quanto à balneabilidade, temos a observar as seguintes características dos parâmetros monitorados:

A Escherichia coli, também chamada de E.coli, é uma bactéria naturalmente encontrada no intestino dos seres humanos e animais de sangue quente, sem que sejam percebidos sintomas. Sua presença em abundância na água indica contaminação por fezes, existindo, portanto, a possibilidade de haver, naquele local, micro-organismos patogênicos capazes de provocar doenças, sendo a mais comum gastroenterite, acarretando em um ou mais dos seguintes sintomas: diarreia, dor de cabeça, dor abdominal, enjoo, febre e vômitos.

As cianobactérias são microrganismos, também denominados de cianofíceas (algas azuis), que podem ocorrer em qualquer manancial superficial especialmente naqueles com elevados níveis de nutrientes (nitrogênio e fósforo). São organismos potencialmente produtores de toxinas (hepatotoxinas, neurotoxinas e dermatotoxinas), que podem levar a intoxicações agudas ou crônicas.

Tabela 1: Limites de E.coli e cianobactérias, definidos para as categorias PRÓPRIA e IMPRÓPRIA

Parâmetro - Unidade	LEGISLAÇÃO	PRÓPRIA	IMPRÓPRIA
<i>E. coli</i> - NMP/100 ml*	CONAMA 274/2000	≤ 800 em 4 (ou +) de 5 amostras	> 800 em 2 (ou +) de 5 amostras ou > 2.000 na última amostragem
Cianobactérias - Células/ml	CONAMA 357/2005	≤ 50.000	> 50.000

Fonte: Adaptado de CONAMA (2000) e CONAMA (2005). *NMP=Número Mais Provável

5. REGIÕES HIDROGRÁFICAS E GERCO (Programa de Gerenciamento Costeiro)

De acordo com a Lei nº 10.350/1994, de 30 de dezembro de 1994, Art. 38, para fins de gestão dos recursos hídricos, o Estado do Rio Grande do Sul foi dividido nas seguintes regiões hidrográficas: Região Hidrográfica das Bacias Litorâneas, Região Hidrográfica da Bacia do Guaíba e Região Hidrográfica da Bacia do Rio Uruguai.

Considerando a relevância desta legislação, definiu-se, neste relatório, pela apresentação dos resultados do monitoramento da balneabilidade, de acordo com a localização dos pontos de balneabilidade nas respectivas Regiões Hidrográficas.

Ressalta-se que, na área de abrangência da Região Hidrográfica das Bacias Litorâneas, os resultados do monitoramento da balneabilidade são apresentados de acordo com distribuição dos pontos em três setores na zona costeira do Estado, com denominação já consolidada pela população, sendo Litoral Norte, Litoral Médio e Litoral Sul. Esta divisão foi definida em função da formação geológica, relevo, bacia de drenagem e limites políticos, conforme Lei nº 7.661/1988 que instituiu o Plano Nacional de Gerenciamento Costeiro, GERCO.

6. HISTÓRICO DO PROJETO BALNEABILIDADE

O Projeto Balneabilidade é realizado pela FEPAM anualmente desde 1979/1980, sempre no período de novembro a março, com duração de 15 ou 16 semanas. No primeiro ano o monitoramento ocorreu em oito pontos localizados nos municípios de Capão da Canoa, Tramandaí e Xangri-lá (Praia de Atlântida). Ao longo dos anos seguintes foram incluídos balneários de outros municípios do Litoral Norte (Balneário Pinhal, Cidreira, Imbé, Torres), Lago Guaíba, Laguna dos Patos, balneário Cassino (Rio Grande) e Santa Vitória do Palmar. A partir de 2001/2002 a Instituição proporcionou um incremento significativo no monitoramento de balneários localizados em municípios do interior do Estado, sendo 09 na Região Hidrográfica do Guaíba e 12 na Região Hidrográfica do Uruguai. Mais recentemente a FEPAM incorporou os balneários Mostardense (2018) e Tavares (2019).

7. REDE E PERÍODO DE MONITORAMENTO

O Projeto Balneabilidade 2022-2023 compreendeu o monitoramento das condições de balneabilidade em 92 pontos, distribuídos em 43 municípios das três Regiões Hidrográficas do Estado (Bacias Litorâneas, Guaíba e Uruguai). (Figura 1)

A FEPAM e a CORSAN, realizaram o monitoramento em 33 e 51 balneários respectivamente, e o Serviço Autônomo de Saneamento de Pelotas/SANEP, em 08 pontos.

No período de 13 de novembro de 2022 a 22 de fevereiro de 2022, durante 15 semanas, foram, portanto, monitorados 48 balneários localizados em ambiente de águas doces e 44 em águas oceânicas,

Os municípios que participaram do Projeto, no período do verão 2022-2023, estão localizados nas Regiões Hidrográficas, conforme listado a seguir:

Região Hidrográfica das Bacias Litorâneas:

Zona Costeira - GERCO - Litoral Norte:

Arroio do Sal, Balneário Pinhal, Capão da Canoa, Cidreira, Imbé, Osório, Santo Antônio da Patrulha, Torres, Tramandaí e Xangri-lá.

Av. Borges de Medeiros, 261 • Porto Alegre, RS • 90020-021

fepam.rs.gov.br

Zona Costeira - GERCO - Litoral Médio:

Arambaré, Cristal, Mostardas, Palmares do Sul, Pelotas, Rio Grande, São José do Norte, São Lourenço do Sul, Tapes, Tavares e Viamão.

Zona Costeira - GERCO - Litoral Sul:

Arroio Grande, Pedro Osório e Santa Vitória do Palmar.

Região Hidrográfica do Guaíba:

Barra do Ribeiro, Cachoeira do Sul, Candelária, General Câmara, Nova Palma, Restinga Seca, Rio Pardo, Santa Maria, São Jerônimo e Viamão.

• Região Hidrográfica do Uruguai:

Alegrete, Cacequi, Dom Pedrito, Jaguari, Manoel Viana, Mata, Rosário do Sul, Santiago, São Francisco de Assis e São Vicente do Sul.

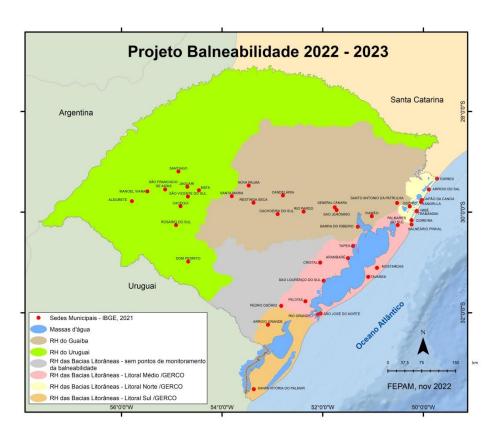


Figura 1: Distribuição dos municípios integrantes do Projeto Balneabilidade 2022- 2023

7.1 REGIÃO HIDROGRÁFICA DAS BACIAS LITORÂNEAS

Foram monitorados 70 balneários na Região Hidrográfica das Bacias Litorâneas, distribuídos na Zona Costeira, de acordo com divisão do GERCO, no Litoral Norte, Litoral Médio e Litoral Sul.

7.1.1 ZONA COSTEIRA - GERCO - LITORAL NORTE

No Litoral Norte, o monitoramento foi realizado em 35 balneários, sendo executado pela FEPAM o total de 32, em águas oceânicas, de Torres ao Balneário Pinhal, e a CORSAN, em três lagoas: *i)* Lagoa do Horácio e Lagoa do Peixoto, em Osório; e *ii)* Lagoa dos Barros, no município de Santo Antônio da Patrulha. (Quadro 1)

Quadro 1: Balneários monitorados na Zona Costeira - GERCO - Litoral Norte.

Obs.: ()* = monitoramento sem divulgação – Decisão MPF 14/10/2016;

MUNICÍPIO ()	BALNEÁRIO	PONTO	LATITUDE	LONGITUDE
ARROIO DO SAL	ARROIO DO SAL – HOTEL D'ITÁLIA	ADS 01	-29.55101	-49.885165
THE COURT	RONDINHA	ADS 02	-29.501652	-49.847167
BALNEÁRIO PINHAL	MAGISTÉRIO - RUA GENERAL CÂMARA	BPI 01	-30.29427	-50.24863
DALINEARIO PINNAL	BALNEÁRIO PINHAL - AV. MARECHAL CASTELO BRANCO	BPI 02	-30.24872	-50.230256
	CAPÃO DA CANOA - EDIFÍCIO YARA	CDC 01	-29.769589	-50.01756
CAPÃO DA CANOA	CAPÃO DA CANOA - HOTEL BASSANI	CDC 02	-29.760803	-50.012031
	CAPÃO DA CANOA-PRAÇA MAURÍCIO BOIANOWSKI	CDC 03	-29.753125	-50.008114
	BALNEÁRIO DE ARAÇÁ - HOTEL ARAÇÁ	CDC 04	-29.7416597	-50.0029236
CAPÃO DA CANOA	CAPÃO NOVO - RUA DO BEIJA-FLOR	CDC 05	-29.686329	-49.971351
	ARROIO TEIXEIRA - HOTEL LINHARES	CDC 06	-29.645596	-49.947335
	CIDREIRA - RUA FALCÃO	CID 01	-30.226434	-50.22162
CIDREIRA	CIDREIRA - COSTA DO SOL	CID 02	-30.20459	-50.213254
JIDREIKA	CIDREIRA - RUA CALÁBRIA	CID 03	-30.192773	-50.208539
	CIDREIRA - CONCHA ACÚSTICA	CID 04	-30.182005	-50.204284
	FOZ RIO TRAMANDAÍ	IMB 01*	-29.974794	-50.11868
MBÉ	IMBÉ - AV. SANTA ROSA	IMB 02	-29.970115	-50.116096
IVIDE	MARILUZ - HOTEL MARILUZ	IMB 03	-29.930654	-50.098395
	SANTA TEREZINHA - RUA FARROUPILHA	IMB 04	-29.89826	-50.083169
	LAGOA DO HORÁCIO	OSO 01	-29.917013	-50.2307
OSÓRIO	ATLÂNTIDA SUL - AV. SAQUAREMA	OSO 02	-29.870726	-50.069588
	LAGOA DO PEIXOTO	OSO 03	-29.8663	-50.2311

SANTO ANTÔNIO DA PATRULHA	LAGOA DOS BARROS	SAP 01	-29.880817	-50.42612
	PRAIA ITAPEVA SUL - RUA EDMUNDO FERREIRA PORTO	TOR 01	-29.397744	-49.768074
	PRAIA DE ITAPEVA	TOR 02*	-29.359548	-49.737032
TORRES	PRAIA DA CAL - AV. INDEPENDÊNCIA	TOR 03	-29.349033	-49.730731
	PRAINHA-RUA JOAQUIM PORTO	TOR 04	-29.342685	-49.72563
	PRAIA GRANDE - PRAÇA CLAUDINO NUNES PEREIRA	TOR 05	-29.338013	-49.723111
	PRAIA DOS MOLHES	TOR 06	-29.327558	-49.713771
	JARDIM ATLÂNTICO - RUA DAS ALAMANDAS	TRA 01	-30.06014	-50.155887
- - - - - - - - - - - - - - - - - - -	NOVA TRAMANDAÍ - AV.CURITIBA	TRA 02	-30.040436	-50.147493
RAWANDAI	TRAMANDAÍ - PLATAFORMA	TRA 03	-30.0055593	-50.1328227
	TRAMANDAÍ - AV. DA IGREJA	TRA 04	-29.991374	-50.125078
	RAINHA DO MAR - COLÔNIA DE FÉRIAS BANRISUL	XAN 01	-29.854779	-50.06131
KANGRI - LÁ	XANGRI-LÁ - RUA RIO TAINHAS	XAN 02	-29.802048	-50.033798
	ATLÂNTIDA - SABA	XAN 03	-29.780799	-50.023061

Av. Borges de Medeiros, 261 • Porto Alegre, RS • 90020-021

Figura 2: Torres, arquivo Diplan/Rafael Midugno

7.1.2 ZONA COSTEIRA - GERCO - LITORAL MÉDIO

No Litoral Médio, o monitoramento foi realizado em 30 balneários (10 em águas salgadas e 20 em águas doces). A FEPAM executou o monitoramento no Balneário Quintão, em Palmares do Sul, e a CORSAN, em 21 balneários, 09 em água salgada e 12 em água doce, sendo que 01 ponto está localizado dentro do Parque Estadual de Itapuã (Praia de Fora). O SANEP, de Pelotas, monitorou 08 pontos na Laguna dos Patos, localizados nos balneários Valverde, Santo Antônio, dos Prazeres e na Praia do Totó. (Quadro 2)

Quadro 2: Balneários monitorados na Zona Costeira - Litoral Médio

MUNICÍPIO	BALNEÁRIO	PONTO	LATITUDE	LONGITUDE
ARAMBARÉ	ARAMBARÉ-PRÓXIMO FOZ ARROIO VELHACO	ARA 01	-30.91187	-51.495903
CRISTAL	BALNEÁRIO - RIO CAMAQUÃ	CRI 01	-31.009259	-52.051857
MOSTARDAS	PRAIA DO BACOPARI - LAGOA DOS BARROS	MOS 01	-30.538297	-50.422998
	BALNEÁRIO MOSTARDENSE	MOS 02	-31.153267	-50.80918
PALMARES DO SUL	BALNEÁRIO QUINTÃO - RUA DOS BANCÁRIOS	PDS 01	-30.340354	-50.266977
	VALVERDE – TRAPICHE	PEL 02**	-31.772372	-52.225259
	VALVERDE – AKI PIZZA	PEL 03**	-31.768423	-52.227698
	SANTO ANTÔNIO – RUA BAGÉ	PEL 04**	-31.764341	-52.227996
PELOTAS	SANTO ANTÔNIO – AV. RIO G. DO SUL	PEL 05**	-31.761887	-52.228258
	SANTO ANTÔNIO - RESTAURANTE	PEL 06**	-31.759442	-52.228329
	SANTO ANTÔNIO - HOTEL	PEL 07**	-31.750706	-52.225251
	BALNEÁRIO DOS PRAZERES	PEL 08**	-31.736419	-52.210244
	ΤΟΤΌ	PEL 09**	-31.723882	-52.196163
	PRAIA DA CAPILHA	RGR 01	-32.488408	-52.588523
	PRAIA DO CASSINO-RUA APOLINÁRIO	RGR 02	-32.205822	-52.175415
RIO GRANDE	PRAIA DO CASSINO- RUA GOIÁS	RGR 03	-32.19218	-52.158831
THO OIVINDE	PRAIA DO CASSINO-RUA BUENOS AIRES	RGR 04	-32.186923	-52.152535
	PRAIA DO CASSINO-RUA DO RIACHO	RGR 05	-32.183323	-52.147406
	PRAIA DO CASSINO - MOLHES	RGR 06	-32.161329	-52.102834
	PRAIA DO CASSINO- RUA FARROUPILHA	RGR 07	-32.175757	-52.135512
SÃO JOSÉ DO NORTE	BALN. DO MAR GROSSO - VILA DOS PESCADORES	SJN 01	-32.05564	-51.99303
	BALN. DO MAR GROSSO - ESTÁTUA DE IEMANJÁ	SJN 02	-32.05022	-51.98781

	PRAIA DAS ONDINAS	SLS 01	-31.378075	-51.963004
SAO LOURENÇO DO	PRAIA DO CAMPING	SLS 02	-31.378206	-51.969104
SUL	PRAIA DAS NEREIDAS	SLS 03	-31.376566	-51.957252
	PRAIA DA BARRINHA	SLS 04	-31.362182	-51.963065
TAPES	BALNEÁRIO REBELO	TAP 01	-30.688008	-51.394432
	PRAIA DO PINVEST	TAP 02	-30.65064	-51.386125
TAVARES	TAVARES	TAV 01	-31.27932	-51.15697
VIAMÃO	PRAIA DE FORA – PARQUE ESTADUAL DE ITAPUÃ	VIA 01	-30.386519	-51.020154

Figura 3: Praia das Ondinas - São Lourenço do Sul. Foto cedida pela Prefeitura de São Lourenço do Sul.

7.1.3 ZONA COSTEIRA - GERCO - LITORAL SUL

No Litoral Sul o monitoramento da balneabilidade foi realizado somente pela CORSAN nos 05 balneários desta região, sendo 02 em águas salgadas e 03 em águas doces. (Quadro 3)

Quadro 3: Balneários monitorados na Zona Costeira - Litoral Sul

addance of Barriouri	Quadro of Daniourico monitorado na Dona Gootena Dicora. Gar							
MUNICÍPIO	BALNEÁRIO	PONTO	LATITUDE	LON GITUDE				
ARROIO GRANDE	BALNEÁRIO PONTAL	AGR 01	-32.333385	-52.822511				

PEDRO OSÓRIO	BALNEÁRIO PEDRO OSÓRIO - RIO PIRATINI	POS 01	-31.861325	-52.816527
CANTA MITÓRIA DO	PRAIA DO CHUI	SVP 01	-33.738057	-53.365346
SANTA VITÓRIA DO PALMAR	PRAIA DO HERMENEGILDO	SVP 02	-33.666639	-53.260201
	BALNEÁRIO DO PORTO	SVP 03	-33.498515	-53.433801

Figura 4: Balneário do Porto - Santa Vitória do Palmar, arquivo Diplan/Clebes Brum

7.2 REGIÃO HIDROGRÁFICA DO GUAÍBA

Na Região Hidrográfica do Guaíba a CORSAN efetuou o monitoramento da balneabilidade em todos os 11 pontos, sendo que dois deles estão localizados dentro dos limites do Parque Estadual de Itapuã: a Praia da Pedreira e a Praia das Pombas. (Quadro 4)

Quadro 4: Balneários monitorados na Região Hidrográfica do Guaíba.

MUNICÍPIO	BALNEÁRIO	PONTO	LATITUDE	LONGITUDE
BARRA DO RIBEIRO	PRAIA RECANTO DAS MULATAS- LAGO GUAÍBA	BDR 01	-30.297071	-51.29806
CACHOEIRA DO SUL	PRAIA NOVA - RIO JACUÍ	CDS 01	-30.056292	-52.882292
CANDELÁRIA	PRAIA CARLOS LARGER - RIO PARDO	CAN 01	-29.649636	-52.786915
GENERAL CÂMARA	BALNEÁRIO CACHOEIRINHA - RIO JACUÍ	GCA 01	-29.953719	-51.764245

NOVA PALMA	BALNEÁRIO ATÍLIO ALÉSSIO - RIO SOTURNO	NPA 01	-29.470909	-53.478243
RESTINGA SECA	BALNEÁRIO DAS TUNAS - RIO VACACAÍ	RSE 01	-29.924081	-53.418494
RIO PARDO	BALNEÁRIO SANTA VITÓRIA - RIO JACUÍ	RPA 01	-29.996059	-52.388045
SANTA MARIA	BALNEÁRIO PASSO DO VERDE - RIO VACACAÍ	SMA 01	-29.935022	-53.708136
SÃO JERÔNIMO	PRAIA DO ENCONTRO - RIO JACUÍ	SJE 01	-29.953431	-51.722634
VIAMÃO	PRAIA DA PEDREIRA - LAGO GUAÍBA PARQUE DE ITAPUÃ	VIA 02	-30.358943	-51.046277
	PRAIA DAS POMBAS - LAGO GUAÍBA PARQUE DE ITAPUÃ	VIA 03	-30.338367	-51.036738

Figura 5: Praia Nova – Cachoeira do Sul. Foto cedida pela Secretaria Municipal de Turismo, Esporte e Lazer.

7.3 REGIÃO HIDROGRÁFICA DO URUGUAI

Na Região Hidrográfica do Uruguai foi realizado o monitoramento da balneabilidade pela CORSAN em 11 balneários. (Quadro 5)

Quadro 5: Balneários monitorados na Região Hidrográfica do Uruguai.

Av. Borges de Medeiros, 261 • Porto Alegre, RS • 90020-021

fepam.rs.gov.br

MUNICÍPIO	BALNEÁRIO	PONTO	LATITUDE	LONGITUDE
ALEGRETE	BALNEÁRIO CAVERÁ – ARROIO CAVERÁ	ALE 01	-29.818836	-55.770703
CACEQUI	BALNEÁRIO SÃO SIMÃO	CAC01	-29.94552	-54.933208
DOM PEDRITO	PRAIA PASSO REAL - RIO IBICUÍ	DPE 01	-30.990565	-54.689232
JAGUARI	BALNEÁRIO FERNANDO SCHILLING - RIO JAGUARI	JAG 01	-29.493616	-54.689218
MATA	BALNEÁRIO DE MATA - RIO TOROPI	MAT 01	-29.580128	-54.421036
MANOEL VIANA	BALNEARIO RAINHA DO SOL - RIO IBICUÍ	MVI 01	-29.595269	-55.478702
ROSÁRIO DO SUL	PRAIA DAS AREIAS BRANCAS - RIO SANTA MARIA	RDS 01	-30.252825	-54.908932
SANTIAGO	BALNEÁRIO DISTRITO DE ERNESTO ALVES - RIO IBICUÍ	SAN 01	-29.361811	-54.735522
SÃO FRANCISCO DE	BALNEÁRIO DE JACAQUÁ - RIO IBICUÍ	SFA 01	-29.685627	-55.193143
ASSIS	BALNEÁRIO POÇO DAS PEDRAS- ARROIO INHACUNDÁ	SFA 02	-29.539574	-55.121624
SÃO VICENTE DO SUL	BALNEÁRIO PASSO DO UMBÚ - RIO IBICUÍ	SVS 01	-29.806345	-54.65064

Figura 6: Praia das Areias Brancas – Rosário do Sul. Foto cedida pelo Departamento de Meio Ambiente de Rosário do Sul.

8. AMOSTRAGEM, ANÁLISE E RESULTADOS

A equipe técnica da FEPAM realizou as coletas nas terças-feiras, sob a coordenação da GERLIT - Gerência Regional do Litoral Norte - Tramandaí, com o apoio técnico da Secretaria de Meio Ambiente e Infraestrutura - SEMA. As amostras foram encaminhadas ao Laboratório da FEPAM, em Porto Alegre, para análise microbiológica do parâmetro *E.coli*. A FEPAM encerrou o monitoramento na 14ª semana.

As equipes da CORSAN efetuaram as amostragens nas segundas-feiras, exceto no Balneário Passo do Verde, em Santa Maria, que ocorreu no domingo. A análise microbiológica do parâmetro *E.coli* foi realizada nos laboratórios localizados em 7 Regionais da Companhia: Central (Santa Maria), Fronteira (Alegrete), Litoral (Osório), Metropolitana (Cachoeirinha), Pampa (Rosário do Sul), Sul (Rio Grande) e Vale dos Sinos (Canoas). A contagem de cianobactérias foi executada no Laboratório Central da CORSAN, localizado em Porto Alegre.

Foram identificados, no período, os seguintes gêneros de cianobactérias:

- Lagoa do Peixoto (Osório): Aphanizomenon sp., Dolichospermum sp., Geitlerinema sp., Merismopedia sp. e Microcystis sp.
- Balneário Rebelo e Praia do Pinvest (Tapes): Aphanocapsa sp., Geitlerinema sp. e Phormidium sp.

Os técnicos do SANEP coletaram nas segundas-feiras. As amostras foram encaminhadas para o Laboratório da instituição, onde foram realizadas as análises do parâmetro *E.coli* e de contagem de cianobactérias. Foram identificados os seguintes gêneros de cianobactérias na Laguna dos Patos: *Dolichospermum sp.*, *Geitlerinema sp.*, *Microcystis sp.*, *Oscillatoriales*, *Pseudonabaena sp.*, e *Sphaerocavum sp.*

Nas tabelas 2 a 6 são apresentados os resultados semanais, com informação das condições do tempo nas últimas 24 horas (antes do resultado) e durante a coleta (após o resultado), de acordo com a simbologia:

- símbolo sol = ausência de chuva
- símbolo 1 gota = chuva fraca
- ♦ símbolo 2 gotas = chuva intensa

Tabela 2: Resultados de monitoramento da balneabilidade no período novembro de 2022 a fevereiro de 2023, na região costeira do Litoral Norte.

S(n) = Semana(n).

Parâmetros: E.coli - Unidade NMP/100ml; Cianobactérias - Unidade células/ml

MUNICÍPIO	CÓDIGO	Parâmetro		NOVEMBR	0		DEZE	MBRO				JANEIRO			I	FEVEREIRC)
			S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
ARROIO DO SAL	ADS 01	E.coli	≎272≎	≎20≎	63 ♦	∆20 ≎	≎<10≎	♦237♦	≎520≎	≎98≎	○41○	≎20≎	≎185≎	≎20≎	©121©	⇔ 637 ⇔	*
0.12	ADS 02	E.coli	≎368≎	≎10≎	63 ♦	♦20 ≎	0310	♦20 ♦	≎134≎	≎62≎	Q41Q	≎10≎	≎52≎	≎<10≎	≎86≎	0479 ♥	*
BALNEÁRIO	BPI 01	E.coli	≎313≎	♦842 ≎	♦ ♦20≎	♦189 ≎	♦ ♦41≎	♦♦31 章	\$171\$	≎41 ≎	≎31≎	≎20≎	0410	≜75 ≎	≎122≎	\$1956\$	*
PINHAL	BPI 02	E.coli	≎309≎	♦145 ≎	♦♦41 ○	♦74 章	♦ ♦10≎	♦ ♦20≎	≎146≎	≎63≎	041 ♥	≎10≎	≎63≎	≎63≎	≎144≎	≎906≎	*
	CDC 01	E.coli	≎110≎	°<10°	♦<10 ≎	♦10 ≎	□121 □	♦309 ♦	≎551≎	≎10≎	≎201≎	≎31≎	○121 ○	○<10○	⇔ 495 ⇔	≎530≎	*
	CDC 02	E.coli	≎75≎	≎10≎	♦41 ≎	≜86 ≎	≎74≎	657 657 6	≎373≎	≎20≎	\$97\$	≎10≎	≎241≎	⇔31 ⇔	≎233≎	\$121\$	*
CAPÃO DA	CDC 03	E.coli	°41°	○<10○	♦73 ≎	♦74 ≎	≎187≎	♦<10 ♦	≎383≎	≎20≎	≎74≎	≎31≎	≎161≎	≎203≎	≎262≎	≎134≎	*
CANOA	CDC 04	E.coli	≎246≎	্<10়	♦98 ≎	♦31 ≎	≎10≎	♦10 ♦	≎489≎	≎20≎	≎63≎	○<10○	≎256≎	≎20≎	≎830≎	≎20≎	*
	CDC 05	E.coli	≎62≎	্<10়	63 ≎	♦52 ≎	≎75≎	♦10 ♦	≎368≎	0310	0310	≎20≎	≎63≎	≎<10≎	≎331≎	≎216≎	*
	CDC 06	E.coli	≎85≎	°41°	♦41 ≎	♦41 ≎	©31©	♦10 ♦	≎337≎	≎52≎	≎31≎	○<10≎	≎85≎	≎<10≎	≎98≎	⇔ 487 ⇔	*
CIDREIRA	CID 01	E.coli	≎345≎	∆467♦	♦♦<10≎	≜86 ≎	♦ ♦379≎	♦ ♦<10≎	≎85≎	≎109≎	≎63≎	≎20≎	≎158≎	∮10 ≎	≎148≎	≎624≎	*

	CID 02	E.coli	≎404≎	♦97 ≎	♦ ♦20≎	♦75 ♀	♦ ♦86≎	♦♦31 ♀	≎146≎	≎97≎	≎110≎	≎31≎	≎121¢	♦10 ≎	≎185≎	≎706≎	*
	CID 03	E.coli	≎404≎	≜ 265≎	♦♦52 ♀	♦52 ≎	♦ ♦52₽	♦ ♦10≎	≎203≎	≎86≎	₽134₽	\$20 \$	⇔74 ⇔	♦97 ‡	Ф121Ф	⇔ 262 <i>⇔</i>	*
	CID 04	E.coli	○432○	♦556 ≎	♦♦31 ♀	△169 ≎	♦♦52 ‡	♦ ♦52₽	≎185≎	≎63 ⇔	‡ 269 ‡	≎41≎	≎20≎	♦31 ‡	≎160≎	≎657≎	*
	IMB 01	E.coli	≎20≎	∆20 ≎	♦ ♦20≎	♦86 ≎	♦ ♦20≎	♦ ♦20≎	≎63≎	⇔ 20 <i>⇔</i>	≎31≎	⇔ 20 ⇔	≎<10≎	♦160 ≎	≎581≎	⇔ 75 <i>⇔</i>	*
IMBÉ	IMB 02	E.coli	120	♦52 ♦	♦ ♦20≎	♦31 ○	♦ ♦74₽	♦♦<10≎	≎120≎	≎20≎	©122¢	\$31¢	≎63≎	♦146 ♀	○231 ○	≎41≎	*
IIVIBE	IMB 03	E.coli	≎689≎	♦10 ♦	♦ ♦20≎	♦10 ♀	♦ ♦75≎	♦ ♦20≎	≎187≎	⇔ 20 <i>⇔</i>	≎52≎	≎31≎	⇔31 ⇔	♦10 ♀	⇔ 249⇔	⇔ 20 <i>⇔</i>	*
	IMB 04	E.coli	≎75≎	△<10 ♀	♦ ♦20≎	♦30 ≎	♦ ♦63≎	♦ ♦41≎	≎588≎	≎10≎	0410	Q41Q	≎41≎	♦<10 ♀	⇔ 216 ⇔	≎51≎	*
	OSO 01	E.coli	♦46 ♦	°17°	♦33 ♦	∆13△	≎7,8≎	♦350 ♦	\$920 ♦	≎70≎	≎130≎	○13 ○	≎490≎	∆13 ♀	\$4,5 \$	≎7,8≎	≎79≎
OSÓRIO	OSO 02	E.coli	°<10°	△10 ♀	♦ ♦20≎	♦20 ≎	♦ ♦30≎	♦ ♦41≎	≎404≎	≎20≎	≎243≎	₽75₽	≎<10≎	♦<10 ♀	≎185≎	⇔ 20 <i>⇔</i>	*
OSORIO	OSO 03	E.coli	♦23 ♦	≎4,5≎	♦33 ♦	♦14 ♦	≎<1,8≎	♦33 ♦	₽13 ♦	\$2 \$	⇔ 2⇔	≎6,8≎	○<1,8○	♦2 ‡	≎14≎	\$11¢	⇔ 49⇔
	030 03	Ciano	♦ 0 ♦	000	♦314 ♦	△118815△	\$2461 \$	660 ♦	\$4961 ♦	≎ 3755 <i>⇔</i>	≎1205≎	\$2509\$	≎134≎	△2655 ≎	≎520≎	≎367≎	⇔ 46⇔
SANTO ANTÔNIO DA PATRULHA	SAP 01	E.coli	≎170♦	≎490≎	≎130 <i>≎</i>	♦ 790 ♦	⇔ 45 <i>⇔</i>	≎80≎	≎33	≎45 ≎	≎79≎	0110	≎ 49 ≎	₽7₽	\$49\$	≎80≎	\$540≎
	TOR 01	E.coli	°31°	্<10	♦10 ♦	♦10 ♦	≎10≎	♦41 ♦	≎363≎	≎30≎	≎63≎	≎<10≎	≎1401≎	≎<10≎	≎108≎	≎262≎	*
TOPPEC	TOR 02	E.coli	041 0	≎20≎	♦41 ≎	♦31 ≎	0410	♦158♦	≎228≎	≎86≎	≎10≎	≎10≎	0100	≎10≎	≎41≎	≎10≎	*
TORRES	TOR 03	E.coli	○52 ○	≎20≎	62 ≎	♦52 ♥	0100	♦145♦	≎467≎	≎75≎	≎122≎	○<10○	≎185≎	≎10≎	≎20≎	≎75≎	*
	TOR 04	E.coli	0100	≎10≎	♦10 ≎	♦52 ≎	≎20≎	♦158♦	≎1483≎	≎86≎	©31¢	○<10○	≎85≎	≎30≎	⇔ 73⇔	≎52≎	*

	TOR 05	E.coli	≎2755≎	°<10°	∆20 ≎	♦41 ≎	≎20≎	♦158♦	≎504≎	≎63≎	≎20≎	≎<10≎	\$171\$	≎<10≎	≎20≎	Ф122Ф	*
	TOR 06	E.coli	○<10○	°<10°	△20 ≎	♦134 ♀	○<10○	♦120♦	≎75≎	Ф327Ф	041 ♥	≎10≎	≎<10≎	○<10○	≎51≎	©135©	*
	TRA 01	E.coli	≎52≎	♦31 ♦	♦♦10 ♀	♦31 °	♦ ♦327₽	♦ ♦<10≎	≎30≎	≎86≎	\$31¢	©<10¢	○<10○	♦41 ≎	≎187¢	⇔ 75⇔	*
,	TRA 02	E.coli	≎109≎	♦10 ♦	♦♦31 ♀	63 ≎	♦ ♦132♀	♦ ♦10≎	≎52≎	○146 ○	¢110¢	©<10¢	≎10≎	♦<10 ♀	≎161¢	Ф327Ф	*
TRAMANDAİ	TRA 03	E.coli	≎199≎	♦265 ♦	♦ ♦86≎	♦122 ≎	♦ ♦158≎	♦ ♦75≎	≎74≎	≎556≎	≎74≎	≎75≎	⇔ 63 <i>⇔</i>	♦41 ≎	₽145₽	©107©	*
	TRA 04	E.coli	≎275≎	♦464	♦ ♦183≎	♦576 ≎	♦ ♦199≎	♦ ♦75≎	○158 ○	≎663≎	≎185≎	≎98≎	≎161≎	♦74 ₽	₽74₽	≎185≎	*
	XAN 01	E.coli	○<10○	∆10 ≎	♦♦<10 ♀	♦10 ≎	♦ ♦72₽	♦ ♦199≎	≎355≎	⇔ 20⇔	≎602≎	⇔ 272 <i>⇔</i>	○<10○	♦20 ≎	‡246 ‡	⇔ 75⇔	*
XANGRI-LÁ	XAN 02	E.coli	≎135≎	°<10°	♦52 ♦	63 ≎	≎20≎	♦20 ♦	≎166≎	≎10≎	○<10○	≎10≎	≎10≎	≎10≎	≎355≎	041 0	*
	XAN 03	E.coli	≎161≎	○<10○	♦<10	∆20 ≎	⇔74 ⇔	♦246 ♦	≎93≎	≎10≎	≎52≎	≎31≎	≎20≎	≎20≎	⇔ 275 ⇔	0410	*

^{*}Cores: laranja = ANÁLISE INICIAL (como define a CONAMA 274/2000, o resultado é obtido a partir da análise de 05 semanas consecutivas); verde=PRÓPRIA; vermelha=IMPRÓPRIA

Tabela 3: Resultados de monitoramento da balneabilidade no período novembro de 2022 a fevereiro de 2023, na região costeira do Litoral Médio.

S(n) = Semana(n).

Parâmetros: E.coli - Unidade NMP/100ml; Cianobactérias - Unidade células/ml

MUNICÍPIO	CÓDIGO	Parâmetro		NOVEMBRO)		DEZ	EMBRO		J	IANEIRO			FI	EVEREIRO		
			S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
ADAMBARÉ	100	F "															
ARAMBARÉ	ARA 01	E.coli	≎9,3≎	≎9,3≎	≎790≎	≎230≎	≎49≎	≎6,8 ♦	≎170≎	≎790≎	≎94≎	≎17≎	₽6,8₽	♦9,3♦	≎49≎	♦ ♦11≎	≎34≎

CRISTAL	CRI 01	E.coli	♦79 ≎	≎49≎	≎49≎	≎49≎	\$79\$	♦130♦	≎130≎	≎130≎	≎23≎	≎49≎	≜23 ♀	0490	♦33 Φ	©33©	○49 ○
MOSTARDAS		E.coli	♦ ♦39≎	≎14≎	°21°	\$39¢	∆ 4≎	♦1100 ♦♦	¢13¢	0110♦	○4,5○	≜ 79≎	≎280≎	¢1700¢	©79¢	\$220¢	♦11♦
MOSTARDAS		E.coli	≎49≎	≎240 <i>≎</i>	≎27 ≎	≎26≎	©12©	6,8 ≎	\$49\$	¢33¢	♦4,5 ≎	≎146	©23©	\$33¢	©33©	©23©	♦17 ♀
PALMARES DO SUL	PDS 01	E.coli	≎583≎	∆256 ≎	♦ ♦41≎	∮ 52≎	♦ ♦355≎	♦ ♦31≎	©74©	≎31∳	≎20≎	≎<10≎	©10©	∮10 ≎	≎203≎	≎880≎	*
	PEL 02	E.coli	≎13000≎	45	≎490 <i>≎</i>	≎2300≎	⇔ 78 ⇔	♦ 310 <i>후</i>	\$45\$	∆170 ≎	¢330¢	¢210¢	00	♦20 ≎	∮140 ≎	≎330≎	000
	FLL UZ	Cianobact.	≎445 ≎	000	≎992≎	000	¢1085¢	♦51000♦	080	♦ 0≎	©3425©	0 0	¢10¢	∮150 ≎	60 ≎	000	030
	PEL 03	E.coli	≎220≎	≎140≎	≎330≎	≎1300¢	©170©	♦ 790≎	⇔230 ⇔	♦ 0≎	≎170≎	≎78≎	©130©	♦20 ≎	♦61 ≎	°61°	000
PELOTAS	I LL 03	Cianobact.	≎215≎	000	≎332≎	000	≎530≎	♦ 400600 <i>≎</i>	≎254≎	♦ 0≎	≎7618≎	0 0	00	♦ 0≎	♦ 0¢	000	000
LLOTAG	PEL 04	E.coli	≎220≎	≎130≎	≎7900≎	≎2300≎	≎110≎	♦ 330 <i>후</i>	≎130≎	♦ 0≎	≎790≎	≎40≎	¢170¢	♦45 ♀	♦40 Φ	≎130≎	≎20≎
	I LL 04	Cianobact.	≎605≎	000	0 0	≎35≎	≎721≎	♦ 870000 <i>‡</i>	⇔ 1083 ⇔	♦ 0≎	≎6826≎	0 0	≎30≎	♦ 0≎	♦ 0¢	000	050
	PEL 05	E.coli	≎68≎	≎700≎	3300	○1300 ○	○140 ○	♦ 230 <i>후</i>	☆ 460 <i>⇔</i>	≜20 ≎	≎40 ≎	¢20¢	≎260≎	♦40 ≎	♦110 ≎	¢45¢	≎20≎
	I LL 00	Cianobact.	000	≎40≎	000	000	⇔ 282 <i>⇔</i>	♦ 1695000≎	≎90≎	♦ 0≎	\$2230\$	0 0	0 00	♦ 0≎	♦ 0≎	000	000

	PEL 06	E.coli	≎790≎	≎110≎	≎1700≎	≎230≎	≎20≎	∳ 790 ₽	≎110≎	♦ 0≎	≎61¢	©20¢	≎170≎	♦20 ¢	∮140 ≎	≎20≎	≎78≎
		Cianobact.	≎185≎	000	000	000	000	∮ 51000≎	¢1773¢	60 ≎	≎3315≎	000	000	00♦	≬ 0≎	¢0¢	≎10≎
	PEL 07	E.coli	≎78≎	≎40≎	≎790≎	≎1400≎	\$330¢	∳ 78 ₽	¢330¢	♦20 ≎	¢0¢	0450	≎40≎	♦78 ‡	♦40 ≎	≎40≎	000
	PEL UI	Cianobact.	○105○	÷15÷	000	<u>00</u> 0	≎99≎	∮ 51000 ≎	⇔ 430 ⇔	∆ 3555≎	≎6525≎	۵0۵	000	♦1800 ≎	≬ 0≎	000	000
	PEL 08	E.coli	≎20≎	°120°	≎790≎	≎330≎	¢490¢	♦ 490 <i>≎</i>	≎330≎	∆ 45≎	۵0۵	≎230≎	≎700≎	∮130 ≎	♦ 490≎	≎1300≎	≎490≎
	FEL 00	Cianobact.	000	000	000	01 0	≎1050≎	∮ 51000 ≎	⇔ 4260 ⇔	♦ 0≎	≎7252≎	۵0۵	000	0 0	≬ 0≎	00	000
	PEL 09	E.coli	≎150≎	≎78≎	≎490≎	≎790≎	01100	∳ 790 ¢	\$45\$	♦ 0≎	۵0۵	≎78≎	≎20≎	♦20 ≎	♦45 ≎	000	⇔ 45 ⇔
		Cianobact.	°525°	000	°0°	000	≎1490≎	∮ 51000 ≎	≎1600≎	♦ 0≎	≎9692≎	۵0°	00	∆ 0≎	∆ 0≎	000	©13©
	RGR 01	E.coli	°110°	≎23≎	0140	033 0	©330¢	≎23 ≎	∳ 79≎	\$330\$	\$49\$	⇔ 49⇔	0140	©23©	0450	\$46\$	⇔23 ⇔
RIO GRANDE	RGR 02	E.coli	≎33≎	≎23≎	≎240≎	≎79≎	≎130≎	⇔23 ⇔	≜23 ‡	≎23≎	≎49 ≎	⇔ 49⇔	≎700≎	≎230≎	≎130≎	≎79≎	≎23≎
	RGR 03	E.coli	49 0	≎79≎	≎23≎	049 0	≎78≎	\$240\$	≜ 49≎	¢33¢	©23©	©23©	\$490\$	≎230≎	©45©	\$49\$	≎20≎
	RGR 04	E.coli	≎23≎	≎330≎	≎79≎	≎79≎	≎230≎	⇔23 ⇔	∆240 ≎	Ф33 <i>Ф</i>	≎ 49 <i>≎</i>	⇔ 49 <i>⇔</i>	≎700≎	\$33 \$	¢78¢	⇔240 ⇔	≎20≎

	RGR 05	E.coli	≎23≎	≎230≎	°1300°	≎79≎	≎230≎	⇔23 ⇔	≜ 49≎	©230©	©23©	⇔ 49⇔	≎350≎	≎130≎	⇔230⇔	0490	Q45Q
	RGR 06	E.coli	0130	130 °	°27°	≎23≎	Q45Q	©23©	♦49 ≎	©33.0	¢33¢	¢33¢	≎140¢	©230©	≎78≎	≎79≎	≎20≎
	RGR 07	E.coli	≎23≎	÷33÷	≎130≎	≎23≎	¢45¢	©23©	♦49 ≎	©23©	≎23≎	Ф23Ф	\$490\$	©130©	÷20÷	≎79≎	\$45\$
SÃO JOSÉ	SJN 01	E.coli	♦17 ♦	≎79≎	≎130≎	÷23÷	¢33¢	©23©	○49 ○	≎79≎	≎79≎	¢110¢	0490	\$49\$	\$79\$	0170	\$49\$
DO NORTE	SJN 02	E.coli	♦11 ♦	≎130¢	≎79≎	≎130≎	¢49¢	©49©	\$33¢	≎70≎	≎ 49 ≎	¢79¢	¢170¢	Ф23Ф	¢33¢	\$33¢	¢17¢
	SLS 01	E.coli	♦6,8 ≎	°13°	≎23≎	♦ 79≎	¢13¢	♦79♦	≎79≬	≎79≎	≎7,8≎	0140	¢13¢	♦ ♦490≎	≎<1,8≎	0170	≎94≎
SÃO LOURENÇO	SLS 02	E.coli	♦22 章	≎33≎	≎23≎	♦22 ≎	≎7,8≎	♦7,8 ♦	₽17 ♦	\$170¢	≎9,3≎	¢170¢	¢13¢	♦ ♦22章	\$350¢	\$49\$	\$79¢
DO SUL	SLS 03	E.coli	♦6,8 ≎	≎170¢	≎79≎	♦6,8 ≎	Q14Q	♦79♦	≎22	≎7,8≎	○<1,8○	¢39¢	≎4,5≎	♦ ♦13♀	¢2¢	\$22¢	≎70≎
	SLS 04	E.coli	♦1,8 ♀	020	≎140≎	♦4,5 ≎	©13©	∆14△	≎170♦	○27 ○	≎7,8≎	049 ♥	020	♦ ♦20≎	02 0	0470	0490
		E.coli	△ 490 △	≎490 ≎	°170°	°230°	¢49¢	∆1100△	△ 490≎	♦ 2300 <i>\$</i>	≎700≎	\$ 540 \$	\$220\$	\$49\$	0460	≎49¢	O4,5O
TAPES	TAP O1	Cianobact.	♦ 0 ♦	≎1043≎	≎200≎	≎783≎	000	♦ 0 ♦	♦ 0≎	♦ 0≎	000	000	000	\$57¢	≎2340≎	000	000
	TAP O2	E.coli	♦6,8 ♦	≎230≎	≎79≎	≎330≎	¢33¢	♦ 490 ♦	♦33 章	♦33 ≎	≎49≎	≎540≎	\$4,5\$	\$33¢	≎63 ≎	©23©	¢7,8¢

		Cianobact.	♦ 0 ♦	≎1662≎	≎261≎	≎646≎	000	≬ 34 ♦	♦ 0≎	♦ 0≎	000	000	000	000	000	000	000
TAVARES	TAV 01	E.coli	△14 ≎	0140	○6,8○	°14°	0110	≎33♦	Ф23Ф	≎20≎	♦47 ♥	⇔ 40 ♦	020	≎23≎	♦17 ♥	0170	♦22♦
VIAMÃO	VIA 01	E.coli	≎6,8≎	≎4,5 ≎	○<1,8○	0170	○4,5○	≎26	≎22♦	○<1,8♦	020	020		≎<1,8≎	O<1,80	020	♦2♦

^{*}Cores: laranja = ANÁLISE INICIAL (como define a CONAMA 274/2000, o resultado é obtido a partir da análise de 05 semanas consecutivas); verde=PRÓPRIA; vermelha=IMPRÓPRIA

Tabela 4: Resultados de monitoramento da balneabilidade no período novembro de 2022 a março de 2023, na região costeira do Litoral Sul.

S(n) = Semana(n).

Parâmetros: E.coli - Unidade NMP/100ml; Cianobactérias - Unidade células/ml

MUNICÍPIO	CÓDIGO	Parâmetro		NOVEMBR	0		DEZE	MBRO				JANEIRO)		F	EVEREIR	0
			S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
ARROIO GRANDE	AGR 01	E.coli	△<1,8 ♀	°<1,8°	°<1,8°	°2°	020	©33©	≎130♦	♦330 ♀	○<1,8≎	020	≎46≎	♦ 2≎	○<1,8○	¢2¢	0490
PEDRO OSÓRIO	POS 01	E.coli	1300 ≎	≎230≎	≎350≎	≎49≎	©17©	01100	01300	01300	≎140≎	≎350≎	≎79≎	♦1300 ≎	≎70≎	□1300 □	\$460 \$
	SVP 01	E.coli	♦ ♦79 ♦	°<1,8°	≎240≎	°110°	≎45≎	≎230♦	♦2400 \$	©79©	≜140 ♀	≎350≎	\$49\$	♦ 49≎	∆23 ♀	\$23 \$	©23©
SANTA VITÓRIA DO PALMAR	SVP 02	E.coli	♦ ♦49 ♦	○<1,8○	°1600°	≎140≎	≎20≎	≎130♦	≜23 ≎	©230©	≜130 ♀	≎240≎	©130©	∆33 ♀	♦110 ♀	\$33¢	©23©
	SVP 03	E.coli	♦♦130 ♦	°<1,8°	°1600°	≎170≎	≎790≎	≎170♦	♦330 ♀	≎460≎	♦1100 ≎	⇔ 920 ⇔	\$490\$	♦ 460≎	♦220 ♥	≎280≎	≎130≎

^{*}Cores: laranja = ANÁLISE INICIAL (como define a CONAMA 274/2000, o resultado é obtido a partir da análise de 05 semanas consecutivas); verde=PRÓPRIA; vermelha=IMPRÓPRIA

Tabela 5: Resultados do monitoramento da balneabilidade 2022-2023 na Região Hidrográfica do Guaíba.

S(n) = Semana(n).

Parâmetros: E.coli - Unidade NMP/100ml; Cianobactérias - Unidade células/ml

MUNICÍPIO	CÓDIGO	Parâmetro	N	IOVEMBR	10		DEZE	MBRO				JANEIRO			F	EVEREIR	0
			S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
BARRA DO RIBEIRO	BDR 01	E.coli	△1700△	°220°	≎790≎	≎1300 <i>≎</i>	©14©	♦540 ♦	©12©	01300	≎490≎	≎130≎	∆22 ♀	♦220 ♀	♦110 ♀	≎280≎	≎490≎
CACHOEIRA DO SUL	CDS 01	E.coli	♦ ♦330≎	\$33¢	°110°	△ 490≎	≎49≎	≎79≎	♦ 49≎	♦26 ≎	≎4,5≎	\$33¢	©33©	≎7,8≎	\$130\$	©130©	©130©
CANDELÁRIA	CAN 01	E.coli	♦ ♦70≎	○<1,8○	≎4,5≎	≎3300≎	≎68≎	≎23 ≎	♦♦14≎	6,8 ≎	©13©	©17©	©17©	≎170≎	©17©	©13©	≎6,8≎
GENERAL CÂMARA	GCA 01	E.coli	♦110 ≎	♦4,5 ♦	≎49 ≎	∆24 ≎	≎33 <i>≎</i>	♦ ♦14 ♦	∆130△	∆ 49≎	≎8,2≎	♦ ♦11≎	♦110 ♀	○49○	©2©	○49○	©13©
NOVA PALMA	NPA 01	E.coli	△ 490≎	≎170≎	≎110≎	≎2200≎	≎540≎	≎590≎	⇔ 49⇔	≎130≎	≎140≎	≎920≎	≎490≎	♦2300 ‡	⇔ 540 ⇔	⇔ 94 ⇔	≎110¢
RESTINGA SECA	RSE 01	E.coli	△ 790≎	0110	≎20≎	△170 ♀	≎49¢	\$33¢	≎130≎	≜26 ₽	≎79≎	©210¢	¢2200¢	©22©	≎170≎	©22©	≎110≎
RIO PARDO	RPA 01	E.coli	♦94 ≎	0170	≎70≎	♦♦1300 ≎	*	♦ 7,8≎	♦4,5 ≎	♦14 ♦	0110	≎7,8≎	≎7,8≎	01100	≎140≎	020	♦20 ♦
SANTA MARIA	SMA 01	E.coli	∆3500 ≎	°22°	≎350≎	♦ ♦33≎	©33©	♦70 ≎	≎330≎	♦ ♦220≎	©17©	♦ 9,3≎	♦ ♦210≎	∮ 9200 <i>⇔</i>	≎790≎	≎49≎	01100
SÃO JERÔNIMO	SJE 01	E.coli	♦700 ♦	≎140≎	≎170≎	♦490 ≎	≎78≎	♦ 35000 ♦	♦1100 ≎	♦ 490 ♦	\$230\$	≜ 26₽	♦230 ≎	≎330≎	≎490≎	≎49≎	\$2200\$
VIAMÃO	VIA 02	E.coli	4,5	°2°	°<1,8°	°2°	≎6,8≎	⇔4 ♦	070	○<1,8♦	020	\$7,8\$	○49○	©7©	○<1,8≎	○<1,8≎	♦<1,8 ♦
VIAWIAO	VIA 03	E.coli	≎23≎	4,5 0	4,5	○27○	0140	○<1,8 ♦	080	⇔ 7♦	020	020	⇔ 49⇔	≎7,8≎	0140	0130	♦4 ♦

^{*} Não coletado - Cores: laranja = ANÁLISE INICIAL (como define a CONAMA 274/2000, o resultado é obtido a partir da análise de 05 semanas consecutivas); verde=PRÓPRIA; vermelha=IMPRÓPRIA

Tabela 6: Resultados do monitoramento da balneabilidade 2022-2023 na Região Hidrográfica do Uruguai.

S(n) = Semana(n).

Parâmetros: E.coli - Unidade NMP/100ml

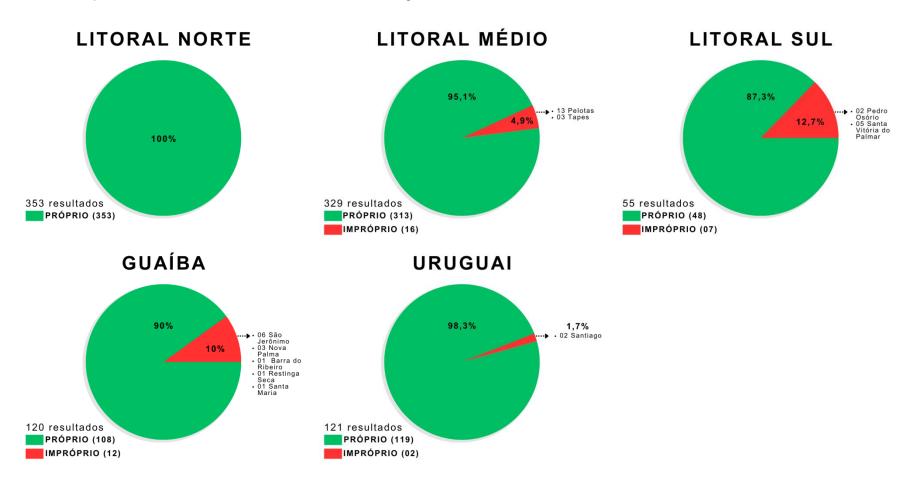
MUNICÍPIO	CÓDIGO	Parâmetro		NOVEMBR)		DEZE	MBRO				JANEIRO			F	EVEREIR	5
			S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
ALEGRETE	ALE 01	E.coli	♦220 ♦	≎700♦	≎220≎	≎79≎	≎240≎	≎79≎	♦23 ♥	≎79≎	≎170≎	≎130≎	≎46≎	≎240≎	≎79≎	01100	≎79≎
CACEQUI	CAC 01	E.coli	△170 ♀	≎110≎	≎70≎	≎33≎	≎79≎	≎46≎	≎220≎	♦ ♦70≎	≎94≎	≎170≎	≎79≎	≎130≎	≎4,5≎	0170	≎46≎
DOM PEDRITO	DPE 01	E.coli	♦350 ≎	♦110 ♦	31 0	≎790≎	©27©	09,30	63 ≎	∆33 ≎	≎6,8≎	\$220¢	\$490 \$	Ф33Ф	0110	©33©	≎79≎
JAGUARI	JAG 01	E.coli	∆230 ♀	♦230 ♦	°110°	♦ 4 900 •	©23©	♦49 ≎	≎ 49 ≎	≎790≎	⇔ 79⇔	≎140 <i>≎</i>	≎23 ≎	©130©	¢110¢	≎46≎	≎170≎
MANOEL VIANA	MVI 01	E.coli	♦ ♦240≎	△130 ♀	≎79≎	≎79≎	≎49 ≎	¢35¢	\$350 ♦	♦ 49≎	©130©	≎49 <i>≎</i>	\$79¢	≎170≎	0330	≎49 ≎	≎220≎
MATA	MAT 01	E.coli	△140 ♀	0170	0170	♦130 ♀	○78 ○	¢13¢	\$4,5\$	○70 ○	≎6,8≎	≎170≎	0170	0130	0130	≎6,8≎	≎170≎
ROSÁRIO DO SUL	RDS 01	E.coli	∆130 ≎	≎220≎	°22°	0170	0330	¢17¢	0170	♦ ♦170≎	049¢	○220 ○	0330	0170	≎70≎	©130¢	≎350≎
SANTIAGO	SAN 01	E.coli	♦170 ○	≎1200°	°110°	♦4600♦	○94 ○	©33 <i>©</i>	0940	6210≎	≎7,8≎	0330	0220	0220	÷30÷	0270	≎26≎
SÃO FRANCISCO	SFA 01	E.coli	△140 ≎	♦♦3500 ♦	≎ 49 ≎	≎49≎	≎80≎	∆140△	♦ ♦130≎	♦33 ♥	≎79≎	≎80≎	⇔ 49 ⇔	*	○23	≎80≎	≎79≎
DE ASSIS	SFA 02	E.coli	♦70 ≎	♦♦33 ♦	≎80≎	≎330≎	≎110≎	♦220 ♦	♦ ♦130≎	♦130 ♀	049 ♥	≎50≎	≎79≎	*	≎80≎	≎80≎	≎46≎
SÃO VICENTE DO SUL	SVS 01	E.coli	∆330 ≎	♦1300 ♦	0490	△ 490≎	©23©	≜23 ♀	⇔ 700 ⇔	\$33¢	©170¢	©79¢	©33©	\$350\$	≎230≎	⇔220⇔	©33©

^{*} Não coletado - Cores: laranja = ANÁLISE INICIAL (como define a CONAMA 274/2000, o resultado é obtido a partir da análise de 05 semanas consecutivas); verde=PRÓPRIA; vermelha=IMPRÓPRIA

Com base nos resultados, temos as condições de própria e imprópria, por região descritas a seguir e em forma de gráficos, conforme Quadro 6 :

Zona Costeira – GERCO - Litoral Norte, do total de 353 resultados obtidos, 100,00 % foi classificado na condição PRÓPRIA.

Zona Costeira - Litoral Médio, do total de 329 resultados, 313 foram classificados na condição PRÓPRIA (95,1 %) e 16 registros na condição IMPRÓPRIA (4,9%), sendo 13 nos balneários de Pelotas e 03 no Balneário Rebelo, em Tapes.


Zona Costeira - Litoral Sul, do total de 55 resultados, 48 foram classificados na condição PRÓPRIA (87,3 %) e 07 registros na condição IMPRÓPRIA (12,7%), sendo 02 no balneário em Pedro Osório, no rio Piratini, e 05, em Santa Vitória do Palmar.

Região Hidrográfica do Guaíba, do total de 120 resultados, 108 foram classificados na condição PRÓPRIA (90%), enquanto em quatro locais (Barra do Ribeiro, Nova Palma, Restinga Seca, São Jerônimo e Santa Maria) ocorreram 12 registros na condição IMPRÓPRIA, equivalente a 10%.

Região Hidrográfica do Uruguai, do total de 121 resultados, 119 foram classificados na condição PRÓPRIA (98,3%), com 02 registros na condição IMPRÓPRIA (1,7%) em Santiago, na Semana 05 e na Semana 06.

Quadro 6: Comparativo dos resultados da balneabilidade 2022/2023 nas Regiões monitoradas no Estado do Rio Grande do Sul

9. DIVULGAÇÃO

A divulgação dos resultados da balneabilidade foi realizada semanalmente, com o primeiro boletim a partir da quinta semana do monitoramento, atendendo, deste modo, a Resolução CONAMA n°274/2000.

Os boletins foram divulgados sexta-feira, pela Assessoria de Comunicação – ASSCOM, sendo o primeiro no dia 16 de dezembro de 2022 e o último no dia 24 de fevereiro de 2023.

As formas de divulgação na temporada 2022-2023 foram as seguintes:

- Placas indicativas das condições Própria / Imprópria, instaladas próximas aos pontos de monitoramento; (Figura 7)
 - Página eletrônica e redes sociais da FEPAM (Instagram e Facebook);
 - Demais meios de comunicação, como rádio, TV e jornais de circulação no estado;
 - Aplicativo BALN "Web app"; (Figura 8)

Figura 7: Placa instalada no Balneário em Tavares. Foto cedida pela Secretaria Municipal de Meio Ambiente.

Segundo informação da ASSCOM, a partir de clipagem das matérias divulgadas em jornais, rádios e TV, foram registradas nesta edição em torno de 700 matérias sobre a balneabilidade.

O aplicativo BALN foi desenvolvido com o apoio da PROCERGS e está em operação desde dezembro de 2017. Este aplicativo não necessita de "download" em lojas de aplicativos. Acessando o "link" <u>balneabilidade.rs.gov.br</u> é possível visualizar os resultados de balneabilidade da semana atual e 04 semanas anteriores, para o balneário pesquisado.

Além dos resultados de balneabilidade, o BALN também disponibiliza:

- 1) as condições de segurança para o banho, com indicação da cor das bandeiras utilizadas nas guaritas ativas dos guarda-vidas, com o apoio do Corpo de Bombeiros Militar CBM/RS:
- 2) a previsão do tempo, com indicação da temperatura e velocidade do vento, a partir de informação disponibilizada pela SOMAR Meteorologia, por solicitação da SEMA/RS.

Na temporada 2022-2023 o BALN ficou disponível a partir do 1º boletim, na mesma data de início da Operação Verão, e, durante o mês de março, se manteve em funcionamento, divulgando apenas as condições de segurança para o banho, disponibilizadas pelo CBM/RS.

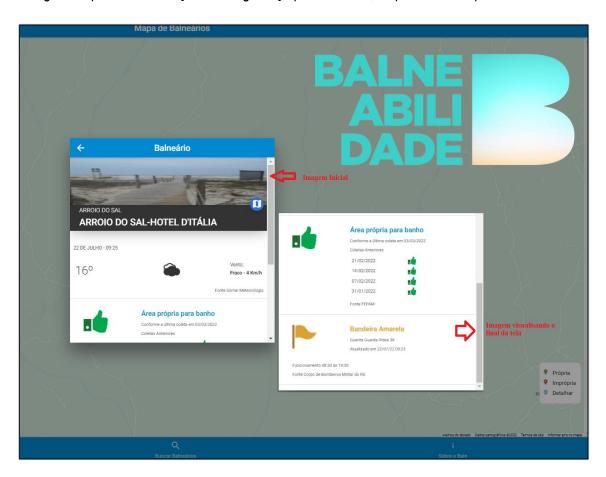


Figura 8: Visualização no BALN: balneabilidade, previsão do tempo e segurança para o banho, com Logotipo do aplicativo.

Na temporada da Operação Verão 2022/2023, a partir de informação disponibilizada pela PROCERGS, foi contabilizado:

- 7.800 usuários acessaram o site.

- 12.601 visualizações de páginas do BALN:

Via Celular: 74,6%

• Via Computador: 24,9%

Via Tablet: 0,5%

Ao verificarmos o item Usuários por horário do dia, no Quadro 7, é possível identificar que na sexta-feira, das 11 às 17h, ocorre o maior número de acessos, coincidindo com o dia da semana da divulgação dos boletins.

No gráfico de colunas, Relatório de Aquisição, os picos de acesso ao aplicativo iniciam a partir da divulgação do 1º boletim, e seguem ao longo do período do veraneio com destaques no Natal, Ano Novo, Navegantes e Carnaval, sendo o valor mais expressivo de acessos pelo usuário verificado na metade do mês de janeiro.

Todas as contas > Balneabilidade
Balneabilidade.com.br →

Página inicial do Google Analytics

Página inicial do Google Analytics

Usuários Sessões Taxa de rejeição Duração da sessão

7,8 mil 10 mil 85,71% 0 min 46 s

13.056,9% 12,753,3% 12,3% 12,5%

500

Página Exibições de página Valor da 2am 4am 12.082 /baln-consulta/index.html 402 \$ 0,00 8am \$ 0,00 /baln-consulta/?channel=webview \$ 0,00 /baln-consulta/?fb...mEfUNHxJOL5g3_Kpg \$ 0,00 2pm /baln-consulta/?fbc...HdAiaCrn4LLe9Pxez8 \$ 0,00 4pm /baln-consulta/?f...PRePU1paEmZNWmzc \$ 0,00 6pm 8pm /baln-consulta/?fbc...189CzifUJ8bJrUuKFc \$ 0,00 /baln-consulta/?fb...MXmOrBjqUt4V0Sq_I \$ 0.00 /baln-consulta/?fb...xLJkuRJ1GeiOFOJsU \$ 0.00 13 de nov. de 2022 - 31 de mar, de 2023 ▼ RELATÓRIO DE PÁGINAS 13 de nov. de 2022 − 31 de mar. de 2023 ▼

400

Quadro 7: Quantitativo de acessos/usuários do sistema BALN. Fonte: PROCERGS.

10. FLUXO DE BANHISTAS

Foi solicitado aos gestores/servidores municipais que contribuem localmente para o Projeto Balneabilidade, dados do quantitativo de pessoas que frequentaram os balneários no período 2022-2023. A informação foi repassada, em sua maioria, pelas secretarias de turismo, apenas dos seguintes 05 municípios:

Arambaré – 60.000 Manoel Viana – 35.000 Palmares do Sul – 40.000

Av. Borges de Medeiros, 261 • Porto Alegre, RS • 90020-021

fepam.rs.gov.br

São Lourenço do Sul – 120.000 São Vicente do Sul – 10.000

O CBMRS contribuiu informando que na Operação Verão 22/23 zelou pela segurança e a proteção da vida de aproximadamente 11.000.000 de veranistas, no Litoral Norte e Litoral Sul, conforme dados da Secretaria de Turismo.

11. CONCLUSÃO

A partir da análise dos resultados, constatamos a boa qualidade dos balneários avaliados, com destaque para os de água salgada, onde não foram observados pontos impróprios ao banho ao longo do período. Nos balneários da água doce, ainda que de forma geral, as condições de balneabilidade se mantiveram próprias na maior parte do tempo. Barra do Ribeiro, Nova Palma, Pedro Osório, Pelotas, Restinga Seca, Santa Maria, Santa Vitoria do Palmar, Santiago, São Jerônimo e Tapes apresentaram pontos impróprios em determinadas avaliações.

As coletas para fins de balneabilidade no litoral ocorrem junto à beira-mar podendo-se inferir que características, tais como dinâmica das marés, correntes marítimas, vento, amplitude de ondas, geomorfologia da costa gaúcha, índice de salinidade, temperatura da água, possam ser fatores que atenuem a presença de coliformes fecais junto à praia. No entanto os índices de coliformes fecais junto à praia elevam-se em dias pós-chuvas, pois ocorre o carreamento de um volume maior de esgoto em direção à beira-mar, podendo afetar a balneabilidade.

A capacidade de "resiliência" (dispersão, transformação) no ambiente costeiro é maior do que nas águas interiores, fazendo com que os padrões de balneabilidade se mantenham aceitáveis, enquanto que balneários de rios, lagoas e laguna de água doce quando recebem uma carga de esgoto em grande quantidade não apresentam a mesma capacidade de recuperação, tornando por vezes esses ambientes impróprios para fins de balneabilidade.

12. REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL, Resolução CONAMA nº 274, de 29 de novembro de 2000. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=272. Acesso em 14 jun. 2022.

BRASIL. Resolução CONAMA nº 357, de 17 de março de 2005. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Acesso em 14 jun. 2022.

CETESB – COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (SP). Qualidade das praias litorâneas no Estado de São Paulo, 2020. Disponível em: https://cetesb.sp.gov.br/praias/wp-content/uploads/sites/31/2021/06/Relatorio-de Qualidade-das-Praias-Litoraneas-no-Estado-de-Sao-Paulo-2020.pdf. Acesso em 22 jun. 2022.

SECRETARIA ESTADUAL DO MEIO AMBIENTE E INFRAESTRUTURA. Disponível em: https://www.sema.rs.gov.br/bacias-hidrograficas. Acesso em 22 jun. 2022.